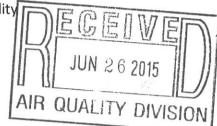
Petroleum Geology - Engineering - Hydrogeology - Regulatory Permitting

111 West Second Street, Suite #400 P.O. Box 2775 Casper, WY 82602

Phone: 307-265-9199 Fax: 307-473-7138


E-mail: cmadison@gga-inc.com

June 19, 2015

NSR Program Manager / attn: O&G Production Facilities Permit Application

Department of Environmental Quality

Air Quality Division Herschler Building, 2-E 122 West 25th Street Cheyenne, WY 82002

RE: Yates Petroleum Corporation

Chapter 6 Section 2 Air Quality Permit Application

Justin Com 1TH

Dear Program Manager:

Enclosed are one hard copy and one electronic copy of the Air Quality Permit Application for the facility named above, prepared on behalf of our client Yates Petroleum Corporation. This is a new single well production facility located in Campbell County, within the "Statewide Area" that is defined in the Chapter 6, Section 2 Oil and Gas Production Facilities Permitting Guidance.

The First Date of Production was March 30, 2015 making this application due by June 30, 2015. The application has been prepared in accordance with the September 2013 O&G Permitting Guidance.

Please contact me if additional information or clarification is needed.

Sincerely,

Cynthia Madison Project Engineer

Attachment

CD

STATE OF WYOMING

Department of Environmental Quality/Air Quality Division C6 S2 Air Quality Permit Application

Yates Petroleum Corporation Justin Com 1TH

Latitude: 43.647684 Longitude: -105.582992 NW NW Section 1, Township 42N, Range 73W Campbell County, WY

API Number 49-005-62315

TABLE of CONTENTS

Page 1	Process Description
Page 2	Presumptive BACT
Page 3	Process Diagram
Pages 4-9	Emission Calculations
Page 10	Emission Summary
Page 11	Production Record / Projected Production
Page 12	Turner Tank Vapor Composition
Pages 13-14	Turner Produced Gas Composition
Pages 16-17	Pneumatic Equipment Manufacturer Information
Pages 18-19	Cimarron Combustor Manufacturer Information
Pages 20-53	IMPACT Forms

Process Description

The Justin Com 1TH is a new horizontal Turner well that began producing on March 30, 2015. This well is located in Campbell County within the area specified as "Statewide" in the Chapter 6, Section 2 Oil and Gas Production Facilities Permitting Guidance (C6 S2 Guidance). It produces from a field designated as Wild Cat by the Wyoming Oil and Gas Conservation Commission.

This is an oil and natural gas production facility with equipment typical of the area. The well is pumped by an electric pumping unit. Fluids are produced from the tubing at approximately 300 PSIG and move through a flow line to an indirect heater with a 0.5 million BTU per hour (MMBTU/HR) burner. From the heater the fluids and gas move on to a two-phase separator. From here the gas is sent to sales and liquids are sent to a heater treater with a 1.0 MMBTU/HR burner, operating at approximately 120 °F and 45 PSIG. Gas off the treater is routed to sales and oil and water are piped to five 400-barrel (BBL) oil tanks and one 400-BBL water tank. Oil is sold via trucking and water is loaded into trucks for off-site disposal.

An electric pump recirculates oil and water back through the production equipment, when necessary.

Oil tank vapors are routed to a 48-INCH by 25-FOOT CIMARRON smokeless combustor for 98% destruction of the associated volatile organic compound (VOC) and hazardous air pollutant (HAP) components (see Pages 18-19). The combustor is equipped with a data recording system for continuous monitoring of the status of the pilot flame. Personnel are notified if no flame is detected.

There are twelve pneumatic process controllers that use/vent gas produced by the well. All are low or no-bleed devices:

- (1) no-bleed kill valve at the wellhead, shuts the well in if pressures outside of a set range are detected.
- (1) Kimray Gen II level controller that operates a pneumatic liquid dump valve on the separator (see Page 15)
- (4) low-bleed Kimray 312 SGT BP valves, two on the separator and two on the treater, control flow of gas to sales or to an emergency flare (see page 16)
- (6) no-bleed Asco electric/pneumatic solenoid valves, control gas flow to the main burners and pilots of the indirect heater, treater, combustor and flare (see Page 17).

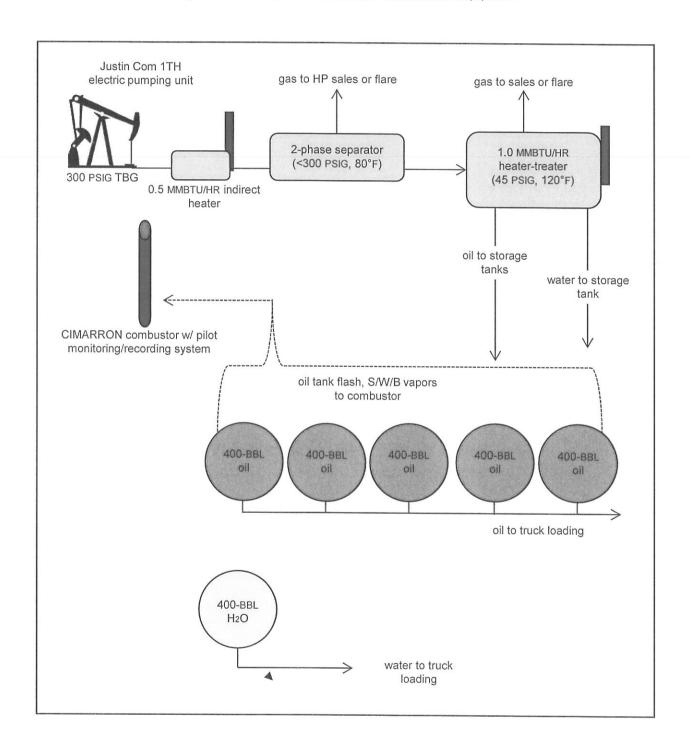
There are no pneumatic pumps.

Presumptive BACT

For "Statewide Area" facilities, flashing emissions containing greater than or equal to 10 tons per year (TPY) VOC must be controlled by at least 98% within 60-days of the First Date of Production.

All vapors from the five oil tanks are collected and routed to a 48-INCH by 25-FOOT CIMARRON combustor designed to operate smokeless and to reduce VOC emissions by at least 98%. It was installed prior to startup of the well on March 28, 2015 and is equipped with a pilot flame monitoring and data recording system.

Upon startup, all pneumatic controllers operating on natural gas must be low or no bleed or must be vented to a closed loop system.


All twelve pneumatic controllers at this site are low or no-bleed devices.

There are no natural gas operated pneumatic pumps and no sources without Presumptive BACT requirements that emit ≥ 8 TPY of VOC or ≥ 5 TPY of HAP that would require a BACT analysis to be filed with this application.

All Presumptive BACT requirements specified in the C6 S2 Guidance for "Statewide Area" production facilities have been met.

Process Diagram

Diagram does not represent actual scale or placement of equipment.

Emission Calculations

Flash & S/W/B

The total volume of vapors flashing from the oil tanks was metered for six days. Applying the volume of vapors to the total oil produced during the metering period yields an MCF/BBL factor (see Page 11). This factor was multiplied by the first year projected oil production to determine the total volume of tank vapors during the first year. Using measured properties of the tank vapors the first year VOC and HAP emissions were calculated using a mass balance equation (below).

The tank vapor flowrate was metered using a FOX Thermal Mass Flow Meter, calibrated for the specific makeup of the average Turner production tank vapors. The meter was inserted in the tanks' vent line per the manufacturer's recommendation and the vapors were metered for six days while concurrent oil production was recorded.

Date	oil (BBL)	Cumulative Meter Reading (MCF)
4/24		3520
4/25	360	
4/26	441	
4/27	564	
4/28	511	
4/29	526	
4/30	498	3602
Tota	al 2900	82

82 MCF/2900 BBL = 0.028276 MCF/BBL

Turner tank vapor properties

Molecular WT:

43.3244 LB/LB-MOL

VOC WT Percent:

79.4801 %

HAP WT Percent:

1.2625 %

Heat Content:

1925 BTU/SCF

Projected Production:

412 BOPD

412 BBL/DAY $(0.028276 \text{ MCF/BBL})(43.3244 \text{ LB/LB-MOL})(1 \text{ LB-MOL}/379 \text{ SCF})(1000 \text{ SCF/MCF})(1 \text{ TON}/2000 \text{ LB})(365 \text{ DAY/YR}) = <math>\underline{243.04 \text{ TPY}}$ total tank vapors

0.028276 MCF/BBL (214 BBL/DAY) (365 DAY/YR) = 2208.64 MCF/YR tank vapors

2208.64 MCF/YR (1000 SCF/MCF) (YR/365 DAY) = 6051.06 SCF/DAY

6051.06 SCF/DAY (DAY/24 HR) (HR/60 MIN) = 4.20 SCF/MIN

First year controlled VOC and HAP emissions are based on 98% control efficiency of the CIMARRON combustor.

Nitrogen oxides (NO_X) and carbon monoxide (CO) emissions from combustion of the tank vapors are calculated using the AP-42 emission factors for flares from the C6 S2 Guidance (0.14 LB NO_X/MMBTU & 0.035 LB CO/MMBTU), the metered tank vapor flow rate and the average heat content of Turner production tank vapors.

 $0.14 \text{ LB NO}_{\text{X}}/\text{MMBTU}$ (2208.64 MCF/YR)(1925 BTU/SCF)(1000 SCF/MCF)(MMBTU/ 10^6 BTU)(TON/2000 LB)

= $0.30 \text{ TPY } NO_X$

 $0.035~{\rm LB}~{\rm CO/MMBTU}$ (2208.64 MCF/YR)(1925 BTU/SCF)(1000 SCF/MCF)(MMBTU/ $10^6~{\rm BTU}$)(TON/2000 LB)

= 0.07 TPY CO

Yates Petroleum Corporation Chapter 6 Section 2 Air Quality Permit Application Justin Com 1TH

Burners

 NO_x and CO emissions from the 0.5 MMBTU/HR indirect heater and the 1.0 MMBTU/HR treater burner were calculated using AP-42 emission factors (100 LB NO_X/MMCF and 84 LB CO/MMCF) and the average heat content of Turner produced gas (see Page 13). For the purposes of this

application it is assumed the burners operate 8760 hours annually.

Turner Produced Gas Heat Content:

1853 BTU/SCF

1.5 MMBTU/HR (100 LB $NO_x/MMCF$) (1853 BTU/1020 BTU) (1 SCF/1020 BTU) (8760 HOURS/YR)

 $(TON/2000 LB) = 1.17 TPY NO_X$

1.5 MMBTU/HR (84 LB CO/MMCF) (1853 BTU/1020 BTU) (1 SCF/1020 BTU) (8760 HOURS/YEAR)

(TON/2000 LB) = 0.98 TPY CO

Pneumatic Equipment

Emissions from pneumatic equipment are calculated using the vent rates of the devices and average properties of Turner produced gas (see Page 14).

Molecular Weight %: 32.9706 LB/LB-MOL

VOC Weight %:

60.4780

HAPs Weight %:

0.2054

One no-bleed pneumatic kill valve is used to shut the well in when pressures that are outside of a set operating range are detected. Activation of the valve would be a rare occurrence. This is a no-bleed valve and associated emissions should be considered insignificant.

One Kimray Gen II level controller activates a liquid dump valve on the separator. As shown on Page 15, this controller vents up 0.4 SCFD when operating in the snap-acting (no-bleed) mode and 0.6 SCFD when operating in the throttling mode. The maximum rate is used in the calculation.

(0.6 SCF/DAY)(26.814-LB/LB-MOL)(1 LB-MOL/379 SCF)(TON/2000 LB)(365 DAY/YR) = 0.01 TPY total

0.01 TPY (60.4780/100) = 0.00 TPY VOC

0.01 TPY (0.2054/100) = 0.00 TPY HAP

Four non-bleed Kimray Model 312 SGT BP back pressure valves (see Page 16) maintain steady pressure on the treater and separator. Two valves on each vessel control the flow of gas off the vessels to the gas sales lines during normal operations. Another two valves on each vessel control the flow of gas to a flare during emergency or upset conditions. A diaphragm inside the back pressure valve is exposed to the gas phase in the vessel. Increasing gas pressure in the vessel due to incoming production causes the diaphragm to rise. This action raises a pilot plug that opens the back pressure valve, allowing the vessel gas to flow through the valve. Once the vessel pressure decreases to a set point the diaphragm lowers, the pilot plug closes and vessel gas stops flowing to the sales line. Several <u>cubic inches</u> of gas that were pushing against the diaphragm are vented. The frequency of valve activation/venting depends on varying gas production rates. To estimate emissions associated with produced gas vented by the valves it is assumed each valve activates 100 times per day. Emissions associated with emergency operation of the valves are not considered.

 $4(200 \text{ in}^3/\text{DAY})(32.9706 \text{ LB/LB-MOL})(1 \text{ LB-MOL}/379 \text{ SCF})(0.00115741 \text{ SCF/IN}^3)(TON/2000 \text{ LB})$ (365 DAY/YR) = 0.01 TPY total vapors

The associated VOC and HAP emissions are insignificant at << 0.01 TPY.

The six **ASCO electric/pneumatic solenoid valves** turn the gas supply on/off to the main burners and pilots of the indirect heater, treater and combustor. Gas pressure causes a spring or piston to rise. This activates an electric coil which sends a signal to a process valve, causing it to open or close. The gas that raised the spring is vented once the corresponding valve is actuated. The volume of gas that is vented is tiny as the entire solenoids themselves are only several inches in length (see Page 17). Associated VOC and HAP emissions should be considered too small to measure.

Fugitives

The typical component count at a Yates single well production facility, the fugitive emission factors listed in the C6 S2 Guidance and properties of the Turner produced gas were used to estimate fugitive emissions.

Emission Factors

Equipment Type	Gas	Light Oil	Water/Light Oil
	LB	LB	LB
	THC/day/component	THC/day/component	THC/day/component
Connector	0.0110	0.0110	0.0058
Flange	0.0210	0.0058	0.0002
Open line	0.1100	0.0740	0.0130
Other	0.4700	0.4000	0.7400
Pump	0.1300	0.6900	0.0013
Valve	0.2400	0.1300	0.0052

Component Count and Service Type

Equipment Type		Gas			Light Oil		,	Water/Light (Oil
	#	LB THC/day	TPY	#	LB THC/day	TPY	#	LB THC/day	TPY
Connector	30	0.3300	0.0600	60	0.6600	0.1200	30	0.1740	0.0300
Flange	10	0.2100	0.0400	36	0.2088	0.0400	30	0.0006	0.0000
Open line	0	0.0000	0.0000	0	0.0000	0.0000	0	0.0000	0.0000
Other	4	1.8800	0.3400	10	4.0000	0.7300	10	7.4000	1.3500
Pump	0	0.0000	0.0000	1	0.6900	0.1259	0	0.0000	0.0000
Valve	20	4.8000	0.8800	50	6.5000	1.1900	20	0.1040	0.0200
Subtotals			1.32			2.21			1.40

Total THC = 4.93 TPY

fugitive VOC = 4.93 * 60.4780/100 = 2.98 TPY

fugitive HAP = 4.93 * 0.2054/100 = 0.01 TPY

Truck Loading

Truck loading emissions were estimated using the method described in the C6 S2 Guidance, the projected daily oil production rate and properties of the Turner oil tank vapors (see Page 14).

projected BOPD> BBL/YR	412 * 365 = 1	50,380 BBL/YR
saturation factor (submerged loading, normal svc.)	0.6	S
true vapor pressure of oil @ T = 50°F	2.3	P
molecular weight of Turner tank vapors (LB/LB-MOL)	43.3244	M
temperature (°R)	510	T
VOC content of Turner tank vapors	79.4801 WT%	
HAP content of Turner tank vapors	1.2625 WT%	

LL = 12.46 * S * P * M/T = 12.46 * 0.6 * 2.3 * 43.3244/510 =**1.46**LB/**1000**GAL 1.46 LB/1000 GAL loaded (42 GAL/BBL) (150,380 BBL/YR) (TON/2000 LB) =**4.61**TPY total losses

4.61 TPY (79.4801/100) = 3.66 TPY VOC

4.61 TPY (1.2625/100) = 0.06 TPY HAP

Emission Summary

Total Estimated Uncontrolled Emissions (Tons Per Year)

EMISSION SOURCE	VOCs	total HAPs	NO _x	со	SO ₂	H₂S
oil tanks	193.17	3.07				
burners			1.17	0.98		
pneumatics	0.01	0.00				
fugitives	2.98	0.01				
truck loading	3.66	0.06				
TOTAL	199.82	3.14	1.17	0.98		

Total Estimated Controlled Emissions (Tons Per Year)

EMISSION SOURCE	VOCs	total HAPs	NO _X	со	SO ₂	H₂S
oil tanks	3.86	0.06	0.3	0.07		
burners			1.17	0.98		
pneumatics	0.01	0.00				
fugitives	2.98	0.01				
truck loading	3.66	0.06				
	10.51	0.13	1.47	1.05		

Hazardous Air Pollutants (TPY)

SOURCE	Benzene	Toluene	Ethyl-Benzene	Xylenes	Other

		BOPD		BWPD	MCFD
3/30/2015		1224		1198	0
3/31/2015		749		748	0
4/1/2015		366		190	40
4/2/2015		567		436	765
4/3/2015		1100		503	1326
4/4/2015		1040		418	1360
4/5/2015		941		261	1190
4/6/2015		1223		454	1279
4/7/2015		625		60	610
4/8/2015		597		130	1360
4/9/2015		869		180	1149
4/10/2015		863		254	1081
4/11/2015	1TH	650		99	971
4/12/2015	<u></u>	741	Average oil production during	140	1063
4/13/2015	=	616	intitial 30 days = 687 BPD	120	939
4/14/2015	O	688	687 * 0.6 = 412 BOPD	94	876
4/15/2015	\circ	658		104	1027
4/16/2015	Justin Com	715		104	1042
4/17/2015	St	602		109	1007
4/18/2015	<u> </u>	762		112	1043
4/19/2015		468		77	1142
4/20/2015		735		114	1043
4/21/2015		499	tank vapor metering	105	1014
4/22/2015		769		115	976
4/23/2015		503	cumulative MCF	53	938
4/24/2015		501	3520	52	896
4/25/2015		360		17	749
4/26/2015		441		33	703
4/27/2015		564		80	102
4/28/2015		511		37	728
4/29/2015		526		47	851
4/30/2015		498	J 3602	52	863

TOTALS: 82 MCF/2900 BO = 0.028276 MCF/BBL

Turner Tank Vapors - Average Composition

Carbon Dioxide	Component	K-Bar 27H wt%	Moore 79H wt%	Moore 81H wt%	Moore 82H wt%	Mustang 19H wt%	Moore 84H wt%	Groves 51H wt%	Ludington Com 15H wt%		Average wt%	
H ₂ S												
Nitrogen 0.0320 8.9894 4.8512 4.3214 0.4999 0.1680 1.1336 7.2692 3.4081 Methane 1.9352 1.9418 4.1097 6.6755 3.1989 3.9265 6.1881 7.2289 4.4006	Carbon Dioxide	0.6492	0.5852	1.1552	1.8523	0.6690	0.7903	1.2075	1.4757		1.0481	
Methane 1.9352 1.9418 4.1097 6.6755 3.1989 3.9265 6.1881 7.2289 4.4006 Ethane 8.5564 8.2028 10.2483 12.5137 11.6886 9.7437 14.9849 11.8254 10.9705 Propane 37.8345 34.1883 35.9667 36.9264 33.3163 46.3296 40.8094 36.8050 37.7720 Isobutane 8.1479 6.7332 7.0443 6.9038 7.3050 7.2015 7.1525 6.1974 7.0857 n-Butane 24.9557 20.2933 20.3635 18.0661 21.6597 20.1437 18.1302 16.9694 20.0726 Isopentane 6.3636 5.5221 5.1567 3.9246 6.6412 3.8951 3.5349 3.6769 4.8394 Cyclopentane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	
Methane 19352 1,9418 4,1097 6,6755 3,1999 3,9265 6,1881 7,2289 4,4006 Ethane 8,5564 8,5208 10,2483 12,5137 11,6886 9,7437 14,9894 11,8254 10,9705	Nitrogen	0.0320	8.9894	4.8512	4.3214	0.4999	0.1680	1.1336	7.2692		3.4081	
Ethane		1.9352	1.9418	4.1097	6.6755	3.1989	3.9265	6.1881				
Propane 37,8345 34,1883 35,9667 36,9264 33,3163 46,3296 40,8094 36,8050 37,7720 15,000000 16,957 10,00000 10,0000 10,0000 10,0000 1,857 1,00000 1,857 1,00000 1,857 1,00000 1,00000 1,6552 1,00000	Ethane	8.5564	8.2028	10.2483	12.5137	11.6886	9.7437					
Sobutane	Propane	37.8345	34.1883	35.9667	36.9264	33.3163	46.3296	40.8094				1
Sopentane	Isobutane	8.1479	6.7332	7.0443	6.9038	7.3050	7.2015	7.1525	6.1974			
n-Pentane 6.3636 5.5221 5.1567 3.9246 6.6412 3.8951 3.5349 3.6769 4.8394 Cyclopentane 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	n-Butane	24.9557	20.2933	20.3635	18.0651	21.6597	20.1437	18.1302	16.9694		20.0726	
Cyclopentane 0.0000	Isopentane	6.3331	5.3242	5.1285	4.2093	6.4215	4.2630	4.0643	3.8054		4.9437	
n-Hexane 1.2502 1.4112 1.0935 0.7723 1.8814 0.7624 0.6385 0.6674 1.0596 Cyclohexane 0.2972 0.5275 0.3377 0.2803 0.7815 0.2446 0.2029 0.1933 0.3581 Other Hexanes 2.3775 2.3902 2.0291 1.4707 2.9521 1.4470 1.2464 1.3014 1.9018 1.9018 0.7570 1.0344 0.7491 0.6154 1.5142 0.5896 0.3847 0.4708 0.7644 Methylcyclohexane 0.1591 0.4864 0.2302 0.2370 0.7090 0.2244 0.1498 0.1577 0.2942 2.2,4 Trimethylpentane 0.0955 0.1922 0.1165 0.1007 0.1569 0.0957 0.0472 0.0772 0.2942 0.247 rimethylpentane 0.0502 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.0546 0.0022 0.0006 0.0002 0.0018 0.0007 0.0008 0.0022 0.0546 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0546 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0002 0.0016 0.0009 0.0018 0.0007 0.0008 0.00022 0.0018 0.0007 0.0008 0.00022 0.0018 0.0007 0.0008 0.00022 0.0018 0.0007 0.0008 0.0002 0.0018 0.0000 0.000	n-Pentane	6.3636	5.5221	5.1567	3.9246	6.6412	3.8951	3.5349	3.6769		4.8394	
Cyclohexane 0.2972 0.5275 0.3377 0.2803 0.7815 0.2446 0.2029 0.1933 0.3581 0.1916 0.1917 0.2917 0.29521 1.4470 1.2464 1.3014 1.9018 0.1918 0.	Cyclopentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	
Cyclohexane 0.2972 0.5275 0.3377 0.2803 0.7815 0.2446 0.2029 0.1933 0.3581 Other Hexanes 2.3775 2.3902 2.0291 1.4707 2.9521 1.4470 1.2464 1.3014 1.9018 Heptanes 0.7570 1.0344 0.7491 0.6154 1.5142 0.5896 0.3847 0.4708 0.7644 Methylcyclohexane 0.1591 0.4864 0.2302 0.2372 0.7090 0.2244 0.1498 0.1577 0.2942 2,2,4 Trimethylpentane 0.0955 0.1922 0.1165 0.1007 0.1569 0.0957 0.0472 0.0772 0.2942 2,2,4 Trimethylpentane 0.0502 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.052 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.0012 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 <td< td=""><td>n-Hexane</td><td>1.2502</td><td>1.4112</td><td>1.0935</td><td>0.7723</td><td>1.8814</td><td>0.7624</td><td>0.6385</td><td>0.6674</td><td></td><td>1.0596</td><td></td></td<>	n-Hexane	1.2502	1.4112	1.0935	0.7723	1.8814	0.7624	0.6385	0.6674		1.0596	
Heptanes 0.75/0 1.0344 0.7491 0.6154 1.5142 0.5896 0.3847 0.4708 0.7644 Methylcyclohexane 0.1591 0.4864 0.2302 0.2370 0.7090 0.2244 0.1498 0.1577 0.2942 2,2,4 Trimethylpentane 0.0550 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.0546 Toluene 0.0224 0.0397 0.0260 0.0191 0.0936 0.0186 0.0129 0.0317 Ethylbenzene 0.0026 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 Xylenes 0.0077 0.0039 0.0062 0.0024 0.0073 0.0013 0.0044 0.0052 Xylenes 0.1730 0.3194 0.1857 0.1267 0.3598 0.1185 0.0804 0.1221 0.0848 Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.000 100.00 100.00 100.00	Cyclohexane	0.2972	0.5275	0.3377	0.2803	0.7815	0.2446	0.2029	0.1933		0.3581	
Heptanes 0.75/0 1.0344 0.7491 0.6154 1.5142 0.5896 0.3847 0.4708 0.7644 Methylcyclohexane 0.1591 0.4864 0.2302 0.2370 0.7090 0.2244 0.1498 0.1577 0.2942 2,2,4 Trimethylpentane 0.0550 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.0546 Toluene 0.0224 0.0397 0.0260 0.0191 0.0936 0.0186 0.0129 0.0317 Ethylbenzene 0.0026 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 Xylenes 0.0077 0.0039 0.0062 0.0024 0.0073 0.0013 0.0044 0.0052 Xylenes 0.1730 0.3194 0.1857 0.1267 0.3598 0.1185 0.0804 0.1221 0.0848 Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.000 100.00 100.00 100.00	Other Hexanes	2.3775	2.3902	2.0291	1.4707	2.9521	1.4470	1.2464	1.3014		1.9018	VOC
2,2,4 Trimethylpentane	Heptanes	0.7570	1.0344	0.7491	0.6154	1.5142	0.5896	0.3847	0.4708		0.7644	>
Benzene 0.0502 0.0657 0.0492 0.0342 0.1423 0.0358 0.0266 0.0330 0.0360 0.0224 0.0397 0.0260 0.0191 0.0936 0.0186 0.0129 0.0212 0.0317 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0002 0.0016 0.0000 0.0018 0.0004 0.0052 0.0014 0.0073 0.0013 0.0044 0.0052 0.0016 0.0000 0.0018 0.0004 0.0052 0.0014 0.0073 0.0013 0.0044 0.0052 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0018 0.0014 0.0052 0.0014 0.0013 0.0014 0.0052 0.0014 0.0013 0.0014 0.0052 0.0014 0.0018 0.0014 0.0018 0.0018 0.0014 0.0052 0.0018	Methylcyclohexane	0.1591	0.4864	0.2302	0.2370	0.7090	0.2244	0.1498	0.1577		0.2942	
Toluene 0.0224 0.0397 0.0260 0.0191 0.0936 0.0186 0.0129 0.0212 Ethylbenzene 0.0026 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 0.0009 0.0018 0.0007 0.0008 0.0002 0.0016 0.0009 0.0018 0.0007 0.0008 0.0002 0.0016 0.0009 0.0018 0.0007 0.0008 0.0001 0.00018 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0	2,2,4 Trimethylpentane	0.0955	0.1922	0.1165	0.1007	0.1569	0.0957	0.0472	0.0772		0.1102	
Ethylenzene 0.0026 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 Xylenes 0.0077 0.0039 0.0062 0.0024 0.0073 0.0013 0.0044 0.0052 0.0048 C8* Heavies 0.1730 0.3194 0.1857 0.1267 0.3598 0.1185 0.0804 0.1221 0.1857 Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.0000 100.0000 98.3048 99.3073 Oxygen 0.0000 1.7471 1.1511 0.9482 0.0000 0.0000 0.0000 1.6952 0.6927 Total 100.0	Benzene	0.0502	0.0657	0.0492	0.0342	0.1423	0.0358	0.0266	0.0330		0.0546	
Ethylenzene 0.0026 0.0020 0.0016 0.0009 0.0018 0.0007 0.0008 0.0022 0.0016 Xylenes 0.0077 0.0039 0.0062 0.0024 0.0073 0.0013 0.0044 0.0052 0.0048 C8* Heavies 0.1730 0.3194 0.1857 0.1267 0.3598 0.1185 0.0804 0.1221 0.1857 Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.0000 100.0000 98.3048 99.3073 Oxygen 0.0000 1.7471 1.1511 0.9482 0.0000 0.0000 0.0000 1.6952 0.6927 Total 100.0		0.0224	0.0397	0.0260	0.0191	0.0936	0.0186	0.0129	0.0212	AAP	0.0317	4
C8* Heavies 0.1730 0.3194 0.1857 0.1267 0.3598 0.1185 0.0804 0.1221 0.1857 Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.0000 100.0000 98.3048 99.3073 Oxygen 0.0000 1.7471 1.1511 0.9482 0.0000 0.0000 0.0000 1.6952 Total 100.0 <td>Ethylbenzene</td> <td>0.0026</td> <td>0.0020</td> <td>0.0016</td> <td>0.0009</td> <td>0.0018</td> <td>0.0007</td> <td>0.0008</td> <td>0.0022</td> <td></td> <td>0.0016</td> <td></td>	Ethylbenzene	0.0026	0.0020	0.0016	0.0009	0.0018	0.0007	0.0008	0.0022		0.0016	
Subtotal 100.0000 98.2529 98.8489 99.0518 100.0000 100.0000 100.0000 98.3048 99.3073 Oxygen 0.0000 1.7471 1.1511 0.9482 0.0000 0.0000 0.0000 1.6952 0.6927 Total 100.0	•	0.0077	0.0039	0.0062	0.0024	0.0073	0.0013	0.0044	0.0052		0.0048	
Oxygen 0.0000 1.7471 1.1511 0.9482 0.0000 0.0000 0.0000 1.6952 0.6927 Total 100.0	C8 ⁺ Heavies	0.1730	0.3194	0.1857	0.1267	0.3598	0.1185	0.0804	0.1221		0.1857	
Total 100.0	Subtotal	100.0000	98.2529	98.8489	99.0518	100.0000	100.0000	100.0000	98.3048		99.3073	
Molecular Weight (LB/LB-MOL) 48.0150 44.5500 43.1820 40.3470 46.487 44.128 40.833 39.053 Sat Gross BTU/Real CF 1794.2 1726.4 1932.2 1851.1 1959.3 1852.64 2285.1 1999.8 1925 Sample Temperature (°F) 90 92 130 117 107 107 47 51 Sample Pressure (PSIG) 30 24 32 38 22 29 30 30 30 29 wt% HAP 1.26325	Oxygen	0.0000	1.7471	1.1511	0.9482	0.0000	0.0000	0.0000	1.6952		0.6927	
Sat Gross BTU/Real CF 1794.2 1726.4 1932.2 1851.1 1959.3 1852.64 2285.1 1999.8 1925 Sample Temperature (°F) 90 92 130 117 107 107 47 51 107 Sample Pressure (PSIG) 30 24 32 38 22 29 30 30 29 wt% HAP 1.26325	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	
Sample Temperature (°F) 90 92 130 117 107 107 47 51 107 Sample Pressure (PSIG) 30 24 32 38 22 29 30 30 29 wt% HAP 1.26325	Molecular Weight (LB/LB-MOL)	48.0150	44.5500	43.1820	40.3470	46.487	44.128	40.833	39.053		43.3244	
Sample Pressure (PSIG) 30 24 32 38 22 29 30 30 29 wt% HAP 1.26325	Sat Gross BTU/Real CF	1794.2	1726.4	1932.2	1851.1	1959.3	1852.64	2285.1	1999.8		1925	
Sample Pressure (PSIG) 30 24 32 38 22 29 30 30 29 wt% HAP 1.26325	Sample Temperature (°F)	90	92	130	117	107	107	47	51		107	
	Sample Pressure (PSIG)	30	24	32	38	22	29					
							wt% HAP	1.26325				
								79.4801				_

Turner Produced Gas - Average Composition

Carbon Dioxide 2.0927 2.2388 1.9124 1.8238 2.5066 2.1149 H ₂ S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Nitrogen 0.1563 0.2444 0.1468 0.1710 0.1971 0.1831 Methane 41.7316 47.9150 37.3580 41.1766 36.5392 40.9441 Ethane 20.2040 16.1143 18.9742 18.8829 16.3441 18.1039 Propane 23.7101 21.1726 25.3043 23.2926 25.9849 23.8929 Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 <th>Component</th> <th>Groves 49H</th> <th>Moore 81H</th> <th>K-Bar State 27</th> <th>Groves 51H</th> <th>Moore 82H</th> <th>Average</th>	Component	Groves 49H	Moore 81H	K-Bar State 27	Groves 51H	Moore 82H	Average
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Component	mol%	mol%	mol%	mol%	mol%	mol%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Nitrogen 0.1563 0.2444 0.1468 0.1710 0.1971 0.1831 Methane 41.7316 47.9150 37.3580 41.1766 36.5392 40.9441 Ethane 20.2040 16.1143 18.9742 18.8829 16.3441 18.1039 Propane 23.7101 21.1726 25.3043 23.2926 25.9849 23.8929 Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Carbon Dioxide	2.0927	2.2388	1.9124	1.8238	2.5066	2.1149
Methane 41.7316 47.9150 37.3580 41.1766 36.5392 40.9441 Ethane 20.2040 16.1143 18.9742 18.8829 16.3441 18.1039 Propane 23.7101 21.1726 25.3043 23.2926 25.9849 23.8929 Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethane 20.2040 16.1143 18.9742 18.8829 16.3441 18.1039 Propane 23.7101 21.1726 25.3043 23.2926 25.9849 23.8929 Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Nitrogen	0.1563	0.2444	0.1468	0.1710	0.1971	0.1831
Propane 23.7101 21.1726 25.3043 23.2926 25.9849 23.8929 Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881		41.7316	47.9150	37.3580	41.1766	36.5392	40.9441
Isobutane 2.5694 2.4092 2.8344 2.7594 3.5652 2.8275 n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Ethane	20.2040	16.1143	18.9742	18.8829	16.3441	18.1039
n-Butane 6.2815 6.5749 8.1908 7.4797 9.5741 7.6202 Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Propane	23.7101	21.1726	25.3043	23.2926	25.9849	23.8929
Isopentane 1.1786 1.2059 1.6209 1.5229 1.9216 1.4900 n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Isobutane	2.5694	2.4092	2.8344	2.7594	3.5652	2.8275
n-Pentane 1.0483 1.1872 1.6958 1.4820 1.8607 1.4548 Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	n-Butane	6.2815	6.5749	8.1908	7.4797	9.5741	7.6202
Cyclopenatne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	Isopentane	1.1786	1.2059	1.6209	1.5229	1.9216	1.4900
n-Hexane 0.1989 0.2140 0.3732 0.3148 0.3395 0.2881	n-Pentane	1.0483	1.1872	1.6958	1.4820	1.8607	1.4548
	Cyclopenatne	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	n-Hexane	0.1989	0.2140	0.3732	0.3148	0.3395	0.2881
Cyclohexane 0.0900 0.0716 0.1417 0.1159 0.1286 0.1096	Cyclohexane	0.0900	0.0716	0.1417	0.1159	0.1286	0.1096
Other Hexanes 0.3466 0.3875 0.6087 0.5335 0.0618 0.3876	Other Hexanes	0.3466	0.3875	0.6087	0.5335	0.0618	0.3876
Heptanes 0.2320 0.1349 0.4927 0.2235 0.2225 0.2611	Heptanes	0.2320	0.1349	0.4927	0.2235	0.2225	0.2611
Methylcyclohexane 0.0707 0.0478 0.1328 0.0938 0.0868 0.0864	Methylcyclohexane	0.0707	0.0478	0.1328	0.0938	0.0868	0.0864
2,2,4 Trimethylpentane 0.0172 0.0194 0.0434 0.0227 0.0325 0.0270	2,2,4 Trimethylpentane	0.0172	0.0194	0.0434	0.0227	0.0325	0.0270
Benzene 0.0127 0.0119 0.0258 0.0205 0.0220 0.0186	Benzene	0.0127	0.0119	0.0258	0.0205	0.0220	0.0186
Toluene 0.0115 0.0074 0.0252 0.0202 0.0144 0.0157	Toluene	0.0115	0.0074	0.0252	0.0202	0.0144	0.0157
Ethylbenzene 0.0007 0.0005 0.0022 0.0012 0.0008 0.0011	Ethylbenzene	0.0007	0.0005	0.0022	0.0012	0.0008	0.0011
Xylenes 0.0027 0.0021 0.0058 0.0059 0.0023 0.0038	Xylenes	0.0027	0.0021	0.0058	0.0059	0.0023	0.0038
C8 ⁺ Heavies 0.0445 0.0406 0.1109 0.0571 0.0395 0.0585	C8 ⁺ Heavies	0.0445	0.0406	0.1109	0.0571	0.0395	0.0585
Subtotal 100.0000 100.0000 100.0000 100.0000 100.0000	Subtotal	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
Oxygen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total 100.0000 100.0000 100.0000 100.0000 100.0000	Total	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
Sat Gross BTU/Real CF 1794.2 1726.4 1932.2 1851.1 1959.3 1852.6	Sat Gross BTU/Real CF	1794.2	1726.4	1932.2	1851.1	1959.3	1852.6
Molecular Weight (LB/LB-MOL) 31.8730 30.7210 34.3360 32.8060 35.1170 32.9706	And the second of the second o	31.8730	30.7210	34.3360	32.8060	35.1170	32,9706
Sample Temperature (°F) 90 92 130 117 107 107							
Sample Pressure (PSIG) 30 24 32 38 22 29							

Turner Produced Gas - VOC & HAP Content

Component		mol %	M.W.	(mol % X MW)/100	wt% of i
uas		0.0000	24.00		_
H2S		0.0000	34.08	0	0
02		0.0000	32.00	0	0.0000
CO2		2.1149	44.01	0.9308	0.0283
N2		0.1831	28.02	0.0513	0.0016
Methane C1		40.9441	16.04	6.5674	0.1998
Ethane C2		18.1039	30.07	5.4438	0.1656
Propane C3		23.8929	44.09	10.5344	0.3204
i-Butane i-C4		2.8275	58.12	1.6434	0.0500
n-Butane n-C4		7.6202	58.12	4.4289	0.1347
i-Pentane iC5		1.4900	72.15	1.0750	0.0327
n-Pentane nC5		1.4548	72.15	1.0496	0.0319
n-Hexane n-C6		0.2881	86.17	0.2482	0.0076
Cyclohexane		0.1096	84.16	0.0922	0.0028
other Hexanes		0.3876	85.00	0.3295	0.0100
Heptanes	VOC	0.2611	100.20	0.2616	0.0080
Methylcyclohexane	S	0.0864	98.18	0.0848	0.0026
2,2,4 Trimethylpentane		0.0270	114.22	0.0309	0.0009
Benzene		0.0186	78.11	0.0145	0.0004
Toluene	HAP	0.0157	92.14	0.0145	0.0004
Ethylbenzene		0.0011	106.17	0.0011	0.0000
Xylenes		0.0038	106.17	0.0040	0.0001
C8+ Heavies		0.0585	120.00	0.0702	0.0021
nonanes		0.0000	128.26	0.0000	0.0000
C ₁₀ +		0.0000	142.29	0.0000	0.0000
hydrogen		0.0000	1.01	0.0000	0.0000
Helium		0.0000	4.00	0.0000	0.0000
water		0.0000	18.02	0.0000	0.0000
		100			1.0000
		HA	AΡ	0.2054	WT%
		VO	OC	60.4780	WT%

FLOAT OPERATED LEVEL CONTROLLER

GEN II

APPLICATIONS:

Liquid level controller for oil and gas separators, water knockouts, gas scrubbers and accumulators.

Liquid interface control in fluids of 0.20 minimum differential specific gravities with the standard displacer. Other displacers are available to control liquid interface to 0.10 minimum specific gravities

Operates any diaphragm motor valve requiring not more than 30 psig diaphragm pressure. See sections E1, E2, E3, and E4 for diaphragm operated motor valves.

FEATURES:

Compact design

Snap or throttle control in one pilot

Intermittent bleed pilot (Preferred EPA Natural Gas Star BMP)

Bleed Rate (@ 30 psi - 0.4 scfd snap; 0.6 scfd throttle) Conditional NACE MR0175 Wetted Parts
Low Temp Process Seal (Std.) (-50°F to 300°F)
Powder coated enclosure

Vibration tough

No vent gas in Enclosure

PVC Displacer (Std.) (4000 psi, 175°F);

316 SS Displacer (1500 psi, 350°F)

40 micron supply gas filter

1/4" NPT vented pilot

Simple pilot removal

SUPPLY PRESSURE:

5 to 30 psig

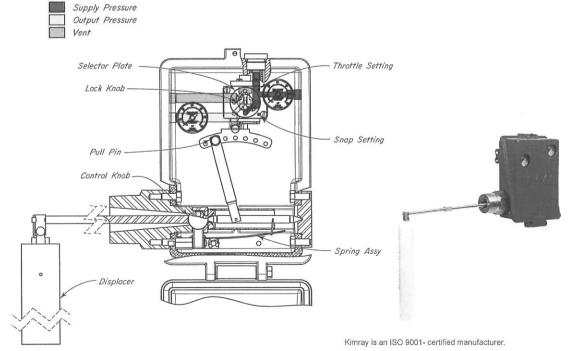
OPERATING PRESSURE:

0 to 4000 psig

Current Revision

Redesign page

OPERATION:


The GEN II Side Mount Liquid Level Controller consists of a DISPLACER for monitoring the changing liquid level, a SPRING for counterbalancing the weight of the DISPLACER, a WAGGLE ARM to transmit DISPLACER movement, a CASE upon which the controller mechanism is mounted, a 30 psig PILOT, a LINK and TANGENT ARM for setting the pilot sensitivity and direct/ indirect action of the controller.

The color cross section of the pilot is shown identifying the supply, output and vent connections. In SNAP SERVICE the SELECTOR PLATE is position to the "S". To operate a Pressure Opening Motor Valve, the PULL PIN is place in the outer most hole of the TANGENT ARM right of the PIVOT. As the vessel liquid rises to partially submerge the DISPLACER, the displaced volume of liquid causes the counterbalance spring to exert a downward force at the end of the WAGGLE ARM HOUSING. The resulting downward movement of the LINK moves the TAN-GENT ARM downward from the ACTUATOR of the PILOT. The generated force of the DISPLACER continues until it activates and SNAPS the PILOT on. YELLOW OUTPUT pressure opens the Pressure Opening Motor Valve allowing the vessel liquid to

As the vessel liquid lowers, the DISPLACER flexes the COUNTERBALANCE SPRING, causing an upward force. The WAGGLE ARM transmits the action through the linkage to the ACTUATOR on the PILOT. The force on the ACTUATOR of the PILOT continues to increase until the PILOT SNAPS off. The YELLOW OUTPUT pressure is vented through the PILOT allowing the Motor Valve to close.

The TANCENT ARM can be adjusted to increase or de crease the SNAP RANGE from 5" to 10" in water. Moving the PULL PIN inward will increase the SNAP RANGE

For THROTTLE mode the LOCK KNOB is loosened and the SELECTOR PLATE is moved from the "S" position to the "T" position. The PULL PIN is placed left of the PIVOT for a Pressure Open Motor Valve and right of the PIVOT for a Pressure Close Motor Valve

www.kimray.com

C1:01 1 Issued 9/13

PRESSURE REGULATORS

GAS BACK PRESSURE

APPLICATION:

Vent lines on oil separators, flow treaters, compressor stations, gas gathering systems.

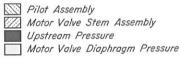
PRESSURE RANGE:

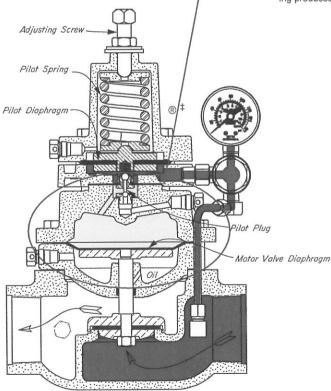
Ductile Iron: 5 psig to 125 psig Ductile Iron: 10 psig to 280 psig Steel: 10 psig to 280 psig

CAPACITY:

Refer to Table of Contents.

OPERATION:


The Pilot Assembly and Motor Valve Stem Assembly (Crosshatched) are the only moving units in the regulator. The PILOT PLUG consists of two stainless balls rigidly connected together. The upper seat for the PILOT PLUG is the Motor Valve Diaphragm Pressure inlet (Red to Yellow). The lower seat for the PILOT PLUG is the pressure vent (Yellow to Atmosphere).

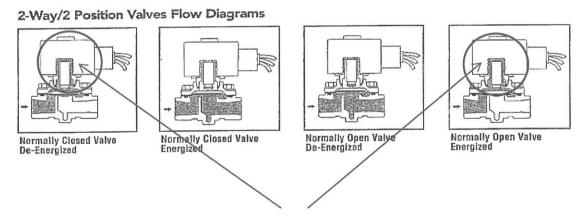

The PILOT SPRING in the bonnet loads the upper side of the Pilot Assembly and is opposed on the underside by Upstream Pressure (Red).

Assume the PILOT SPRING is compressed with the ADJUSTING SCREW for a set pressure greater than the Upstream Pressure (Red). The Pilot Assembly is forced downward by the PILOT SPRING. The lower seat for the PILOT PLUG (Yellow to Atmosphere) is closed and the upper seat for the PILOT PLUG (Red to Yellow) is open. This lets full Upstream Pressure (Red) load the motor valve. The area of the MOTOR VALVE DIAPHRAGM is twice the area of the motor valve seat, assuring a positive shut-off.

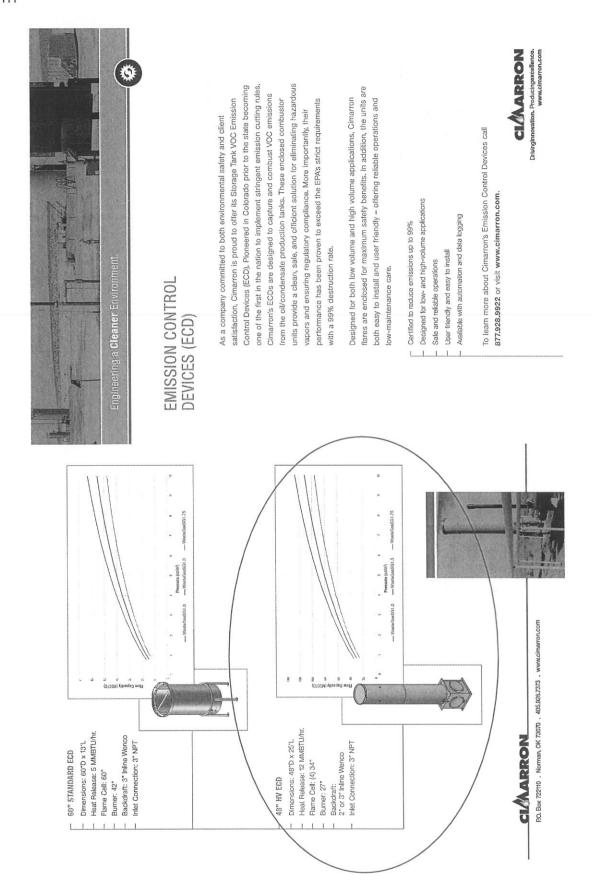
As the Upstream Pressure (Red) increases to the set pressure, the Pilot Assembly moves upward against the PILOT SPRING to first close the upper seat (Red to Yellow) and open the pressure vent (Yellow to Atmosphere). As the Motor Valve Diaphragm Pressure (Yellow) is decreased, the Upstream Pressure (Red) acting under the motor valve seat, opens the valve. With relief of Upstream Pressure (Red) through the motor valve, the Pilot Assembly assumes a position in which both seats of the PILOT PLUG are closed.

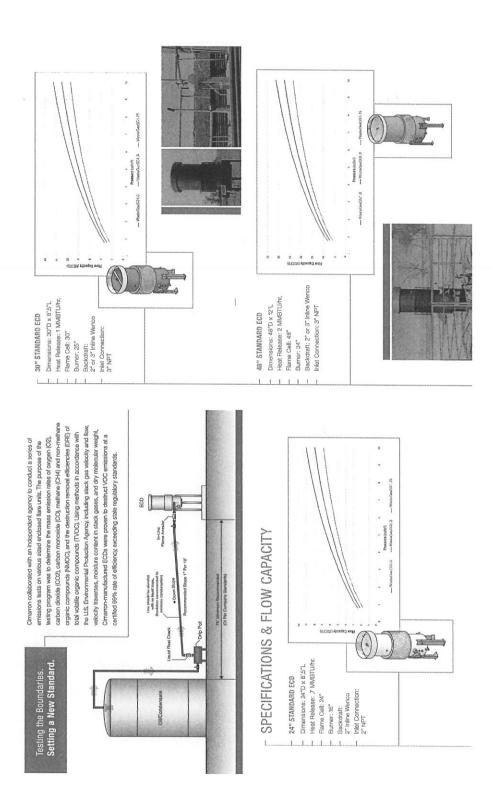
The intermittent bleed pilot, three-way valve action of the PILOT PLUG against its seat adjusts the Motor Valve Diaphragm Pressure (Yellow), repositioning the Motor Valve Stem Assembly to accommodate any rate of flow. The rapid but stable repositioning produces a true throttling action.

ASCO 2-Way Valve Operation


Two-way solenoid valves have one inlet and one outlet, and are used to permit and shut off fluid flow

Two Types of Operations


Normally Closed (NC) – Fluid is shut off when the coil is de-energized, flows through the valve when the coil is energized.


Normally Open (NO) – Fluid flows through the valve when the coil is de-energized, shuts off when the coil is energized.

Internally Piloted – These valves use line pressure to assist operation. When the coil is deenergized (on a Normally Closed valve), the pilot orifice is closed and line pressure is applied to the top of the piston or diaphragm through the bleed orifice, closing the valve. When the coil is energized, the core opens the pilot orifice, relieving pressure from the diaphragm or piston. Line pressure, alone, opens the valve by lifting the diaphragm or piston off the main orifice.

Shaded area shows the gas that is vented upon activation.

*Name of the contact to whom the permit will be issued:

Air Quality Division

EPARTMENT OF NMENTAL	New Source Review Permit Application Form Cover Shee					
LITY	Is this a revision to an existing application?					

Date of Application: 6/12/2015 Previous Application #: **COMPANY INFORMATION:** Company Name: Yates Petroleum Corporation P.O. Box 2560, 408 Frontage Road Address: City: Gillette State: Wyoming Zip Code: 82717 Country: USA Phone Number: 307-682-4638 **FACILITY INFORMATION:** Facility Name: Justin Com 1TH New Facility or Existing Facility: New Facility Description: Oil and Gas Production Facility Facility Class: Minor Operating Status: Operating Facility Type: **Production Site** For Oil & Gas Production Sites ONLY: First Date of Production (FDOP)/Date of Modification: 3/30/2015 Single well or multiple well facility? Single Does production at this facility contain H2S?* *If yes, contact the Division. API Number(s): 49-005-62315 NAICS Code: 2111 Oil and Gas Extraction **FACILITY LOCATION:** *Enter the facility location in either the latitude/longitude area or section/township/range area. Both are not required. Physical Address: City: Zip Code: State: County: OR Latitude: 43.647684 -105.582992 Longitude: County: Campbell Quarter Quarter: Quarter: Section: Township: 42N Range: 73W For longitude and latitude, use NAD 83/WGS84 datum and 5 digits after the decimal (i.e. 41.12345, -107.56789) **CONTACT INFORMATION:** *Note that an Environmental AND NSR Permitting Contact is required for your application to be deemed complete by the agency. Title: First Name: Last Name: Barber Company Name: Yates Petroleum Corporation Job Title: Rockies Division Regulatory Manager P.O. Box 2560, 408 Frontage Road Address: City: Gillette State: Wyoming Zip Code: 82717 Primary Phone No.: 307-682-4638 tbarber@yatespetroleum.com Mobile Phone No.: 307-682-4641 Fax No.: Contact Type: Environmental contact Start Date:

Additional Contact Typ	pe (if needed):	nvironmenta	al contact	1				
Title: Mr.	First Name:			Tim				
Last Name:	Barber				entermy et a mito de montra a contra de matrial			
Company Name:		Ya	_ ites Petroleum	Corporation				
Job Title:			ision Regulato					
Address:		P.O. Box 2560, 408 Frontage Road						
City:	Gillette	State:		Wyoming				
Zip Code: 82717								
Primary Phone No.:	307-682-4638		E-mail:	tbarber@yatespetroleur	m.com			
Mobile Phone No.:			Fax No.:	307-682-4641				
Contact Type:	Environmental contac	t	Start Date:	No.				
FACILITY APPLICA	ATION INFORMATION	N:						
General Info:								
Has the facility change	ed location or is it a new/	greenfield fa	acility?		Yes			
Has a Land Use Plannii	ng document been includ	led in this ap	plication?		No			
Is the facility located in	n a sage grouse core area	1?*			No			
If the facility is in a sag	ge grouse core area, wha	t is the WER	number?					
* For questions about	sage grouse core area, c	ontact WY G	ame & Fish De	partment.				
Federal Rules Ap	plicability - Facility	<u>Level:</u>						
Prevention of Significa	int Deterioration (PSD):				No			
Non-Attainment New	Source Review:				No			
Modeling Section	1:							
	ision been contacted to	determine if	modeling is re	equired?	No			
- I	part of this application?		J		No			
0 ,	. ,,							
Is the proposed project	t subject to Prevention o	of Significant	Deterioration	(PSD) requirements?	No			
Has the Air Quality Div	vision been notified to sc	hedule a pre	-application m	eeting?	No			
Has a modeling protoc	col been submitted to an	d approved b	by the Air Qua	lity Division?	No			
Has the Air Quality Div	vision received a Q/D and	lysis to subn	nit to the resp	ective FLMs to determine				
the need for an AQRV	analysis?				No			
Required Attachi	ments:							
Facility Map								
Process Flow Diagram	V							
Modeling Analysis (if a	applicable)							
Land Use Planning Do	45 B							
Detailed Project Descr								
Emissions Calculations	10.00							
Ι,	Tim Barb			Rockies Division Re	egulatory Manager			
	Responsible Official (F	Printed Name	e)	Tit	de			

an Official Representative of the Company, state that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge and belief. I further certify that the operational information provided and emission rates listed on this application reflect the anticipated emissions due to the operation of this facility. The facility will operate in compliance with all applicable Wyoming Air Quality Standards and Regulations.

signature: I'M Rowbe

Date: 6-24-2015

Heater/Chiller

Company Equipment ID:	0.5 MMBTU/HR Indirect Heater
Company Equipment Description:	0.5 MMBTU/HR Indirect Heater
Operating Status: Operating	
Operating Status: Operating	t Date.
Initial Construction Commencemen	
Initial Operation Commencement D	
Most Recent Construction/ Modific	ation
Commencement Date:	
Most Recent Operation Commence	ment Date:
Select reason(s) for this emissions	unit being included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction	on (Greenfield/New Facility)
If reason is <i>Reconstruction</i> or <i>Temp</i>	porary Permit or Other, please explain below:
Firing Type: Indirect Heat Input Rating: 0.5 Primary Fuel Type: Field Gas Secondary Fuel Type: N/A Heat Content of Fuel: 1853	Units: MMBtu/hr
Fuel Sulfur Content: 0	Units: BTU/scf Units:
SCC Codes: List all Source Classifications source (e.g., 1-02-002-04).	tion Code(s) (SCC) that describe the process(es) performed by the emission
	31000107
Potential Operating Schedule: Hours/day: Hours/year:	Provide the operating schedule for this emission unit. 24 8760

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? Yes No Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Ves No Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.

Separator/Treater

Company Equipment ID: 2-Phase Sep	erator
Company Equipment Description:	2-Phase Seperator
Operating Status: Operating	
Initial Construction Commencement Date:	
Initial Operation Commencement Date:	3/30/2015
Most Recent Construction/ Modification	
Commencement Date:	
Most Recent Operation Commencement Date:	
Select reason(s) for this emissions unit being i	ncluded in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction (Greenfield	d/New Facility)
If reason is Reconstruction or Temporary Pern	nit or Other, please explain below:
•	, 1
Type of Vessel: 2-Phase Separator	Is Vessel Heated? No
Operating Temperature (F): 80	
Operating Pressure (psig): 300	
SCC Codes: List all Source Classification Code(s)	(SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	
	31000107
Potential Operating Schedule: Provide the	operating schedule for this emission unit.
Hours/day: 24	
Hours/year: 8760	

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? ☐ Yes ☐ No Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? ☐ Yes ☑ No Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.

Separator/Treater

Company Equipment ID: Treater	
Company Equipment Description:	Treater
Operating Status: Operating	
Initial Construction Commencement Date:	
Initial Operation Commencement Date:	3/30/2015
Most Recent Construction/ Modification	
Commencement Date:	
Most Recent Operation Commencement Da	e:
Select reason(s) for this emissions unit bein	g included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction (Greenf	eld/New Facility)
1	
If reason is Reconstruction or Temporary Pe	ermit or Other, please explain below:
Type of Vessel: Heater-Treater	Is Vessel Heated? Yes
Operating Temperature (F): 120	
Operating Pressure (psig): 45	
SCC Codes: List all Source Classification Code	e(s) (SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	
	31000107
Potential Operating Schedule: Provide t	ne operating schedule for this emission unit.
Hours/day: 24	
Hours/year: 8760	
	ecococomicocococococococococococococococo

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? ☐ Yes ☑ No Pollutant:	
Proposed BACT:	
*If yes, attach BACT Analysis with this application.	
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? ———————————————————————————————————	
Proposed LAER:	
*If yes, attach LAER Analysis with this application.	
Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected	_
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:	?
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected	_
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:	
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.	
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.	

Heater/Chiller

Company Equipment II):	1.0 MMB1	U/HR Treater	Burner		
		1.0 MMBTU	J/HR Treate	er Burner		
Operating Status:	Operating					
Initial Construction Cor						
Initial Operation Comm				3/30,	/2015	
Most Recent Construct		ation				
Commencement Date:						
Most Recent Operation	n Commence	ement Date:	•			
				his applicat	tion (mus	t be completed regardless of date
of installation or modi	fication):					
Reason	: Constructi	on (Greenfi	eld/New Faci	lity)		
If reason is <i>Reconstruc</i>	tion or Tem	porary Pern	nit or Other,	please ex	plain belo	w:
Elder Torrer	In alivo at	٦				
Firing Type:	Indirect 1	_			Units:	MMBtu/hr
Heat Input Rating: Primary Fuel Type:	Field Gas			I	Offics.	WWithCayTii
Secondary Fuel Type:	N/A					
Heat Content of Fuel:	1853			I		Units: BTU/scf
Fuel Sulfur Content:	0				Units:	51107301
				•		
		ation Code(s	s) (SCC) that o	describe the	e process(es) performed by the emission
source (e.g., 1-02-002-	04).					
			31000	1107		
			31000	7107		
Potential Operating S	chedule:	Provide th	ne operating s	schedule fo	or this emi	ssion unit.
Hours/day		24				
Hours/year: 8760				_		
					_	

Yates Petroleum Corporation Chapter 6 Section 2 Air Quality Permit Application Justin Com 1TH

Emission Unit Form

Control Equipment: No
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER: *If yes, attach LAER Analysis with this application.
Til yes, attacil LAER Allalysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Storage Tank/Silo

Company Equipment ID: Oil	Tanks				
Company Equipment Description:		5 400-BBL Oil Tanks			
Operating Status: Operating					
Initial Construction Commencement D	Date:				_
Initial Operation Commencement Date	:e:	3/	30/2015		
Most Recent Construction/ Modificati	ion				
Commencement Date:					
Most Recent Operation Commenceme	ent Date:				
Select reason(s) for this emissions un	nit being in	cluded in this appli	cation (must	be complete	ed regardless of date
of installation or modification):					
Reason: Construction (Greenfield	/New Facility)			
If reason is <i>Reconstruction</i> or <i>Tempo</i>	rary Perm	it or Other, please	explain below	:	
Material Type: Liquid					
Description of Material Stored:		46 Deg API Crude C)		
		Units:	barrels	Т	
Capacity: 2000 Maximum Throughput: 412	າ	· Units:	barreis	_l Units:	barrels/day
				Units:	barrels/hr
, , , ,				Offics.	Dai i Cis/iii
Operating Pressure (psig): 0 Vapor Pressure of Material Stored (ps	sia):	3.6		_	
Is Tank Heated?: No	sig).	3.0		-	
is fallk heateur.					
SCC Codes: List all Source Classification	on Code(s)	(SCC) that describe	the process(e	s) performe	d by the emission
source (e.g., 1-02-002-04).	011 0000(3)	(occ) that accertice	the process(e	o, per o	a by the emission
3001 CC (C.g., 1 02 002 04).					
		40400312			
Potential Operating Schedule: Pro	ovide the o	perating schedule t	for this emissi	on unit.	
Hours/day: 24		. 0			
	760				

Emission Unit Form

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD):
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review:
These rules are found under WAQSR Chapter 6, Section 13.

Storage Tank/Silo

Company Equipment ID: Wat	ater Tank				
Company Equipment Description:		400-BBL Produced W	/ater Tank		
Operating Status: Operating					
Initial Construction Commencement D	Date:				_
Initial Operation Commencement Date	te:	3/3	0/2015		
Most Recent Construction/ Modification	ion				
Commencement Date:					_
Most Recent Operation Commenceme					_
Select reason(s) for this emissions un	nit being in	cluded in this applic	ation (must l	e complete	ed regardless of date
of installation or modification):					
Reason: Construction (C	Greenfield,	/New Facility)			
If reason is <i>Reconstruction</i> or <i>Tempor</i>	orary Permi	it or Other, please e	xplain below		
Na-torial Truss					
Material Type: Liquid		Produced Water			
Description of Material Stored:		Produced water			
Capacity: 400		Units:	barrels	T	
Maximum Throughput: 200	0	· Offics.	barreis	」 Units:	barrels/day
Maximum Hourly Throughput: 21				Units:	barrels/hr
Operating Pressure (psig): 0				OTITEST	Surreis/Til
Vapor Pressure of Material Stored (psi	sig):	0.178		-	
Is Tank Heated?: No	0.6/		- All All All All All All All All All Al	-	
SCC Codes: List all Source Classificatio	on Code(s)	(SCC) that describe the	he process(es	s) performe	d by the emission
source (e.g., 1-02-002-04).	•				
		40400312			
Potential Operating Schedule: Pro	ovide the o	perating schedule fo	r this emissio	n unit.	
Hours/day: 24					
Hours/year: 876	60				

Control Equipment: No				
If yes, please fill out and attach the appropriate Control Device and Release Point Informati	on worksheets.			
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission	unit?			
☐ Yes ☑ No				
Pollutant:				
Proposed BACT:				
*If yes, attach BACT Analysis with this application.				
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission u	unit?			
☐ Yes ☑ No				
Pollutant:				
Proposed LAER:				
*If yes, attach LAER Analysis with this application.				
Federal and State Rule Applicability:				
New Source Performance Standards (NSPS): Subject, but exempt				
New Source Performance Standard are listed under 40 CFR 60-				
Standards of Performance for New Stationary Sources.				
NSPS Subpart: 0000				
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61):	Not Affected			
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR				
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).				
Part 61 NESHAP Subpart:				
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63):	Not Affected			
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63				
Part 63 NESHAP Subpart:				
Prevention of Significant Deterioration (PSD): Not Affected	7			
These rules are found under WAQSR Chapter 6, Section 4.				
Non-Attainment New Source Review: Not Affected				
These rules are found under WAQSR Chapter 6. Section 13				

Loading/Unloading/Dump

Company Equipment ID: Truckloading		
Company Equipment Description:	Truckloading	
Operating Status: Operating		
Initial Construction Commencement Date:		
Initial Operation Commencement Date:	3/30/2015	
Most Recent Construction/ Modification		
Commencement Date:		
Most Recent Operation Commencement Date:		
Select reason(s) for this emissions unit being in	cluded in this application (must be come	loted regardless of data of
installation or modification):	cidded in this application (must be comp	neted regardless of date of
Reason: Construction (Greenfield,	/New Facility)	
reason. Construction (Greenheid)	rivew racinty)	
If reason is <i>Reconstruction</i> or <i>Temporary Permi</i>	it or Other places explain below	
Treason is Neconstruction of Temporary Fermi	t of Other, please explain below:	
Type of Material: Liquid		
Material Description: Crude Oil		
Crude Oil		
Maximum Annual Throughput: 150,380	Units:	le a una la la una
Maximum Hourly Throughput: 180		
Detailed Description of Loading/Unloading/Dum	Units:	: barrels/hr
submerged loading, dedicated service from oil st	torage tanks to 180-BBL truck tank	
SCC Codes list all Course Classification Code (1)	(500)	MARKET LANGER OF STATE A
SCC Codes: List all Source Classification Code(s) ((SCC) that describe the process(es) perfor	med by the emission source
(e.g., 1-02-002-04).		
	40600132	
Petertial Committee Calculate Provider		
	perating schedule for this emission unit.	
Hours/day: 2		
Hours/year: 835		

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.

Company Equipment ID:	Kill Valve	
Company Equipment Description:	Kill Valve	
Operating Status: Operating		
Initial Construction Commenceme	ent Date:	
Initial Operation Commencement	Date:	3/30/2015
Most Recent Construction/ Modif	ication	
Commencement Date:	-	
Most Recent Operation Commend	cement Date:	
Select reason(s) for this emission	s unit being included in	this application (must be completed regardless of date
of installation or modification):		
Reason: Construction	on (Greenfield/New Facil	ity)
If reason is <i>Reconstruction</i> or <i>Ter</i>	nporary Permit or Other	, please explain below:
Type of Equipment: Controller		Bleed/Consumption Rate (cfh): 0.0000001
Controller Type: Inter	mittent	_
Motive Force: Field Gas		VOC Content (%): 60.478
HAP Content (%): 0.2054		
SCC Codes: List all Source Classific	cation Code(s) (SCC) that	describe the process(es) performed by the emission
source (e.g., 1-02-002-04).		
	3100	0199
Potential Operating Schedule:	Provide the operating so	chedule for this emission unit.
Hours/day:	0	
Hours/year:	0	
		90 DATE

Control Equipment: No	
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?	
☐ Yes ☑ No	
Pollutant:	
Proposed BACT:	
*If yes, attach BACT Analysis with this application.	
Lauret Arbierable Fusicion Date (LAFD). Was a LAFD Analysis completed for this amission unit?	
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No	
Pollutant:	
Proposed LAER:	
*If yes, attach LAER Analysis with this application.	
The second section and the second sec	
Federal and State Rule Applicability:	
New Source Performance Standards (NSPS): Subject, but exempt	
New Source Performance Standard are listed under 40 CFR 60-	
Standards of Performance for New Stationary Sources.	
NSPS Subpart: 0000	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected	
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 (CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).	
Part 61 NESHAP Subpart:	
Not offered	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected Not Affected	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)	
standards are listed under 40 CFR 63	
Part 63 NESHAP Subpart:	
Prevention of Significant Deterioration (PSD): Not Affected	
These rules are found under WAQSR Chapter 6, Section 4.	
Those false are found under this gent enapter of coolien s.	
Non-Attainment New Source Review: Not Affected	
These rules are found under WAQSR Chapter 6, Section 13.	

Company Equipment ID:	Back Pressure Valves
Company Equipment Description:	Back Pressure Valves
Operating Status: Operating	
Initial Construction Commenceme	nt Date:
Initial Operation Commencement	Date: 3/30/2015
Most Recent Construction/ Modif	ication
Commencement Date:	
Most Recent Operation Commend	rement Date:
Select reason(s) for this emission	s unit being included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction	on (Greenfield/New Facility)
If reason is <i>Reconstruction</i> or <i>Ten</i>	nporary Permit or Other, please explain below:
Type of Equipment: Controller	Bleed/Consumption Rate (cfh): 0.009
Controller Type: Inter	mittent
Motive Force: Field Gas	VOC Content (%): 60.478
HAP Content (%): 0.2054	
SCC Codes: List all Source Classific source (e.g., 1-02-002-04).	ation Code(s) (SCC) that describe the process(es) performed by the emission
	31000199
Potential Operating Schedule: Hours/day: Hours/year:	Provide the operating schedule for this emission unit. 24 8760

Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? Yes
Proposed BACT: *If yes, attach BACT Analysis with this application. Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant: Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Proposed BACT: *If yes, attach BACT Analysis with this application. Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant: Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
*If yes, attach BACT Analysis with this application. Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant: Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant: Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Proposed LAER: *If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
*If yes, attach LAER Analysis with this application. Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Federal and State Rule Applicability: New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
NSPS Subpart: OOOO National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Tare of Neorina Subpare.
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Company Equipment ID: Gen II Leve	el Controller
Company Equipment Description:	Gen II Level Controller
Operating Status: Operating	
Initial Construction Commencement Date:	
Initial Operation Commencement Date:	3/30/2015
Most Recent Construction/ Modification	
Commencement Date:	
Most Recent Operation Commencement Dat	re:
Select reason(s) for this emissions unit bein	g included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction (Greenfi	ield/New Facility)
If reason is Reconstruction or Temporary Pe	ermit or Other, please explain below:
Type of Equipment: Controller	Bleed/Consumption Rate (cfh): 0.025
Controller Type: Intermittent	
Motive Force: Field Gas	VOC Content (%): 60.478
HAP Content (%): 0.2054	
	() () () () () () () () () ()
	e(s) (SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	
	04000400
	31000199
	and the second s
	ne operating schedule for this emission unit.
Hours/day: 24	
Hours/year: 8760	

Control Equipment: No
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NECHAR Rout C1).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
,
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Company Equipment ID: S	Solonoids
Company Equipment Description:	Solonoidds
Operating Status: Operating	
Initial Construction Commencemen	t Date:
Initial Operation Commencement D	Pate: 3/30/2015
Most Recent Construction/ Modific	ation
Commencement Date:	
Most Recent Operation Commence	ment Date:
Select reason(s) for this emissions	unit being included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction	n (Greenfield/New Facility)
If reason is <i>Reconstruction</i> or <i>Temp</i>	porary Permit or Other, please explain below:
Type of Equipment: Controller	Bleed/Consumption Rate (cfh): 0.00001
Controller Type: Interm	nittent
Motive Force: Field Gas	VOC Content (%): 60.478
HAP Content (%): 0.2054	
SCC Codes: List all Source Classifica	tion Code(s) (SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	
	31000199
,	
Potential Operating Schedule: F	Provide the operating schedule for this emission unit.
Hours/day: 2	24
Hours/year:	3760

If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets. Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
5 Book 983 Color 98 C
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Laurent Aubissandia Francisco Pata (LAFR), Mara a LAFR Anabusia sassalata diferentia sociazione sociazione sociazione
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER: *If yes, attach LAER Analysis with this application.
if yes, attach EAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Design of the second se
Prevention of Significant Deterioration (PSD): Not Affected Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Fugitives

Company Equipment ID: Fugitives	
Company Equipment Description:	Fugitives
Operating Status: Operating	
Initial Construction Commencement Date:	
Initial Operation Commencement Date:	3/30/2015
Most Recent Construction/ Modification	
Commencement Date:	
Most Recent Operation Commencement Date:	
Select reason(s) for this emissions unit being in	icluded in this application (must be completed regardless of date of
installation or modification):	
Reason: Construction (Greenfield	/New Facility)
No.	
If reason is Reconstruction or Temporary Perm	it or Other, please explain below:
Type of Fugitive Emission: Fugitive Leak	s at O&G
SCC Codes: List all Source Classification Code(s)	(SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	
	31000101
Potential Operating Schedule: Provide the o	pperating schedule for this emission unit.
Hours/day: 24	
Hours/year: 8760	

Control Equipment: No
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
□ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
These rules are found under WAQSIN Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Control Equipment:

Flare/Combustor

Manufacturer:	CIMMARON			Date Installe	d:	3/28/20	015
Model Name and				Company Co	ntrol		
Number:	48" X 25' ECD			Equipment I	D:		
Company Control Equ	uipment						
Description:	Tank Vap	or Comb	ustor and Ultra	Low Pressure	Separator C	Combust	tor
Pollutant(s) Controlle	ed: CO	□ NO	x Pb	☐ SO2	☑ VOC	☐ PM	
☐ PM (FIL)	☐ PM Condensib	le 🗆 F	PM 10 (FIL)	☐ PM 2	5 (FIL)	☐ PM	1 10 □ PM 2.5
☐ Other				1			
				_			
NOTE: The following	g fields require numeri	c values	unless otherwi	se denoted w	ith an asteri	isk*	
Maximum Design Cap	pacity (MMSCF/hr):	110 M	ISCFD = 0.005 N	1MCF/HR			
Minimum Design Cap	pacity (MMSCF/hr):	0				1	
Design Control Efficie	ency (%): 98		Capture E	fficiency (%):		100	
Operating Control Eff	ficiency (%):	98					
Flare Type:*	Enclosed	T	Elevated I	Flare Type:*	Non-A	ssisted	
Ignition Device:*	Yes		Flame Pres	ence Sensor:*	Yes		
Inlet Gas Temp (F):	100			Flame Pres	ence Type:*	The	ermocouple
Gas Flow Rate (acfm)):	4.2		Outlet Gas 7	Temp (F):	1000	
☑ This is the	e only control equipme	nt on thi	is air contamina	nt source			
If not, this control eq	uipment is:		Primary	☐ Seco	ndary		Parallel
List all other emission	n units that are also						
vented to this contro	ol equipment:*	none					
List all release point							
this control equipme	100 1020	none					

Yates Petroleum Corporation Pollutant Emissions Form
Chapter 6 Section 2 Air Quality Permit Application (Submit one for each emission unit)
Justin Com 1TH

OIL TANKS

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	ciency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Pol	lutants:						
1.)							
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)						
2.)							
	PM #10 microns in						
	diameter (PE/PM10)						
3.)							
	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)						
5.)	Nitrogen Oxides	0.00	0.411865	lb/ton of production	0.881279	3.86	AP-42
	(NOx)						
6.)	Carbon monoxide	0.00	0.03201	lb/ton of production	0.068493	0.30	AP-42
	(CO)						
7.)	Volatile organic	193.17	0.007469	lb/ton of production	0.015982	0.07	Test results for this
	compounds (VOC)						source
8.)	Lead (Pb)						
9.)	Total Hazardous Air	3.07	0.035211	lb/ton of production	0.075342	0.33	Test results for this
	Pollutants (HAPs)						source
10.)	Fluoride (F)						
11.)	Hydrogen Sulfide			ursmod of malifi			
	(H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
	(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Turner oil weighs 249.29 LB/BBL Well will produce 150,380 BBL LB/BBL (150,380 BBL) (TON/2000 LB) = 18,744 TONS oil/yr. LB/TON of production = X TON / 18,744 TONS (2000 LB/TON) LB/HR = X TONS/8760 HR (2000 LB/TON)

Yates Petroleum Corporation Pollutant Emissions Form
Chapter 6 Section 2 Air Quality Permit Application (submit one for each emission unit)
Justin Com 1TH

BURNERS

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Pre-Controlled Potential Emissions (tons/yr) Pre-Controlled Potential Emissions (tons/yr) Pre-Controlled Potential Emissions (tons/yr) Prescription Units Potential to Emit to Emi				Effic	ciency Standards	İ		
(tons/yr) (PTE) Units (lbs/hr) (tons/yr) Determination		-	Pre-Controlled	Potential		Potential	Potential	
Criteria Pollutants: 1. Particulate emissions (PE/PM) (formerly particulate matter, PM) PM #10 microns in diameter (PE/PM10) PM #2.5 microns in diameter (PE/PM10) PM #2.5 microns in diameter (PE/PM2.5) PM #2.5 microns in diamete			Potential Emissions	to Emit		to Emit	to Emit	Basis for
Criteria Pollutants: 1.			(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	Criteria Pol	lutants:						
Particulate emissions (PE/PM) (formerly particulate matter, PM) PM #10 microns in diameter (PE/PM10) PM #2.5 microns in diameter (PE/PM2.5) PM #2.5 micr								
(PE/PM) (formerly particulate matter, PM) 2.)	1	Particulate emissions						
particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (0.98								
PM	1 1							
2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (OO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist								
PM #10 microns in diameter (PE/PM10)		,						
diameter (PE/PM10)		PM #10 microns in						
3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist								
PM #2.5 microns in diameter (PE/PM2.5)								
diameter (PE/PM2.5)	0.7	PM #2.5 microns in						
4.) Sulfur dioxide (SO2) 0.12484 lb/ton of production 0.267123 1.17 AP-42 5.) Nitrogen Oxides (NOx) 0.98 0.104567 lb/ton of production 0.223744 0.98 AP-42 6.) Carbon monoxide (CO) 0.98 0.104567 lb/ton of production 0.223744 0.98 AP-42 7.) Volatile organic compounds (VOC) 0.223744 0.98 AP-42 8.) Lead (Pb) 0.223744 0.98 AP-42 9.) Total Hazardous Air Pollutants (HAPs) 0.98 AP-42 10.) Fluoride (F) 0.98 AP-42 11.) Hydrogen Sulfide (H2S) 0.98 AP-42 12.) Mercury (Hg) 0.98 AP-42 13.) Total Reduced Sulfur (TRS) 0.98 AP-42 14.) Sulfuric Acid Mist 0.98 AP-42								
5.) Nitrogen Oxides (NOX) 1.17 0.12484 lb/ton of production 0.267123 1.17 AP-42 6.) Carbon monoxide (CO) 0.98 0.104567 lb/ton of production 0.223744 0.98 AP-42 7.) Volatile organic compounds (VOC) 0.00	4.)							
(NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	,		1.17	0.12484	lb/ton of production	0.267123	1.17	AP-42
6.) Carbon monoxide (CO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist		The state of the s	N200000					
(CO) 7.) Volatile organic compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	6.)	Carbon monoxide	0.98	0.104567	lb/ton of production	0.223744	0.98	AP-42
compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	'				77			
compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	7.)	Volatile organic						
8.) Lead (Pb) 9.) Total Hazardous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist								
Pollutants (HAPs)	8.)							
10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	9.)	Total Hazardous Air						
10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist		Pollutants (HAPs)						
11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist	10.)							
(H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist								
13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist		(H2S)						
(TRS) 14.) Sulfuric Acid Mist	12.)	Mercury (Hg)						
14.) Sulfuric Acid Mist	13.)	Total Reduced Sulfur						
38.53 (September 2007) 1		(TRS)						
(SAM)	14.)	Sulfuric Acid Mist						
		(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Turner oil weighs 249.29 LB/BBL Well will produce 150,380 BBL LB/BBL (150,380 BBL) (TON/2000 LB) = 18,744 TONS OIL/SID OIL

Pollutant Emissions Form Chapter 6 Section 2 Air Quality Permit Application (submit one for each emission unit) Justin Com 1TH

FUGITIVES

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effi	ciency Standards	1		
		Pre-Controlled Potential Emissions	Potential to Emit		Potential to Emit	Potential to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
	llutants:						
1.)	Particulate emissions (PE/PM) (formerly particulate matter, PM)						
2.)	PM #10 microns in diameter (PE/PM10)						
3.)	PM #2.5 microns in diameter (PE/PM2.5)						
4.)							
5.)	Nitrogen Oxides (NOx)						
6.)	Carbon monoxide (CO)						
7.)	Volatile organic compounds (VOC)	2.98	0.317968	lb/ton of production	0.680365	2.98	AP-42
8.)	Lead (Pb)						
9.)	Total Hazardous Air Pollutants (HAPs)	0.01	0.001067	lb/ton of production	0.002283	0.01	AP-42
10.)	Fluoride (F)						
11.)	Hydrogen Sulfide (H2S)						
12.)	Mercury (Hg)						
13.)	Total Reduced Sulfur (TRS)						
14.)	Sulfuric Acid Mist (SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Turner oil weighs 249.29 LB/BBL Well will produce 150,380 BBL LB/BBL (150,380 BBL) (TON/2000 LB) = 18,744 TONS OIL/yr. LB/TON of production = X TON / 18,744 TONS (2000 LB/TON) LB/HR = X TONS/8760 HR (2000 LB/TON)

Yates Petroleum Corporation Pollutant Emissions Form
Chapter 6 Section 2 Air Quality Permit Application (Submit one for each emission unit)
Justin Com 1TH

PNEUMATICS

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

•			Effic	iency Standards			
		Pre-Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)	Units	Potential to Emit (lbs/hr)	Potential to Emit (tons/yr)	Basis for Determination
Criteria Pol	lutants:						
1.)	Particulate emissions (PE/PM) (formerly particulate matter, PM)						
2.)	PM #10 microns in diameter (PE/PM10)						
3.)	PM #2.5 microns in diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)						
5.)	Nitrogen Oxides (NOx)						
6.)	Carbon monoxide (CO)						
7.)	Volatile organic compounds (VOC)	0.01	0.001067	lb/ton of production	0.002283	0.01	Manufacturer Data
	Lead (Pb)						
9.)	Total Hazardous Air Pollutants (HAPs)	0	0	lb/ton of production	0	0	Manufacturer Data
	Fluoride (F)						
11.)	Hydrogen Sulfide (H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur (TRS)						
14.)	Sulfuric Acid Mist (SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Turner oil weighs 249.29 LB/BBL Well will produce 150,380 BBL LB/BBL (150,380 BBL) (TON/2000 LB) = 18,744 TONS oil/yr. LB/TON of production = X TON / 18,744 TONS (2000 LB/TON) LB/HR = X TONS/8760 HR (2000 LB/TON)

Pollutant Emissions Form Chapter 6 Section 2 Air Quality Permit Application (submit one for each emission unit) Justin Com 1TH

Truck Loading

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	ciency Standards	1		
		Pre-Controlled Potential Emissions	Potential to Emit		Potential to Emit	Potential to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Po	lutants:						
1.)	Particulate emissions (PE/PM) (formerly particulate matter, PM)						
2.)	PM #10 microns in diameter (PE/PM10)						
3.)	PM #2.5 microns in diameter (PE/PM2.5)						
	Sulfur dioxide (SO2)						
5.)	Nitrogen Oxides (NOx)						
6.)	Carbon monoxide (CO)						
7.)	Volatile organic compounds (VOC)	3.66	0.390525	lb/ton of production	0.835616	3.66	AP-42
	Lead (Pb)						
,	Total Hazardous Air Pollutants (HAPs)	0.06	0.006402	lb/ton of production	0.013699	0.06	AP-42
	Fluoride (F)						
7.	Hydrogen Sulfide (H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur (TRS)						
14.)	Sulfuric Acid Mist (SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Turner oil weighs 249.29 LB/BBL Well will produce 150,380 BBL LB/BBL (150,380 BBL) (TON/2000 LB) = 18,744 TONS OIL/yr. LB/TON of production = X TON / 18,744 TONS (2000 LB/TON) LB/HR = X TONS/8760 HR (2000 LB/TON)

Complete the table below for *each* release point. Please include release point information for each emission unit. Multiple attachments may be necessary. A release point is a point at which emissions from an emission unit are released into the ambient (outside)air. List each individual release point on a separate pair of lines (release point ID and description). *For longitude and latitude, use NAD 83/WGS84 datum and 5 digits after the decimal* (i.e. 41.12345, -107.56789)

Stad	k Release Point Information	
Company Release Point ID:	Release Point Type: Vertical	
OIL TANKS	Release Point Latitude:	43.647684
OIL TAINIG	Release Point Longitude:	-105.582992
Company Release Point Description:	Base Elevation (ft): 5247	100,002,002
vapors from oil tanks routed to 48-IN by 25-	Stack Height (ft): 25	
FT combustor	Stack Diameter (ft): 4	
The compassion	Exit Gas Velocity (ft/s):	0.01
	Exit Gas Temp (F): 1000	
	Exit Gas Flow Rate (acfm):	4.2
Company Release Point ID:	Release Point Type: Vertical	
TREATER BURNER	Release Point Latitude:	43.647684
	Release Point Longitude:	-105.582992
Company Release Point Description:	Base Elevation (ft): 5096	
fumes from the combustion of natural gas	Stack Height (ft): 20	
exiting the burner stack	Stack Diameter (ft): 0.83	
	Exit Gas Velocity (ft/s):	0.01
	Exit Gas Temp (F): 1000	
	Exit Gas Flow Rate (acfm):	10.86
Company Release Point ID:	Release Point Type: Vertical	
INDIRECT HEATER BURNER	Release Point Latitude:	43.647684
	Release Point Longitude:	-105.582992
Company Release Point Description:	Base Elevation (ft): 5096	
fumes from the combustion of natural gas	Stack Height (ft): 20	
exiting the burner stack	Stack Diameter (ft): 0.83	
	Exit Gas Velocity (ft/s):	0.005
	Exit Gas Temp (F): 1000	
	Exit Gas Flow Rate (acfm):	5.4
Company Release Point ID:	Release Point Type: Horizonta	1
PNEUMATICS	Release Point Latitude:	43.647684
	Release Point Longitude:	-105.582992
Company Release Point Description:	Base Elevation (ft): 5096	
12 pneumatic controllers release vapors at	Stack Height (ft): 4	
an average 4' height	Stack Diameter (ft): 0.0001	
	Exit Gas Velocity (ft/s):	0.1
	Exit Gas Temp (F): 80	0.004
	Exit Gas Flow Rate (acfm):	0.001

Tanks: ACFM = (MSCF/DAY) (1000 SCF/MCF) (DAY/24 HR) (HR/60 MIN)

Burners: ACFM = $(MMBTU/HR)(HR/60 MIN)(SCF/BTU)(10^6 BTU/MMBTU)$ Truckloading: (180 BBL/HR)(HR/60 MIN)(5.61 CF/BBL) = 16.83 ACFM

Pneumatic vent rate: $(400 \text{ in}^3/\text{DAY}) (\text{FT}^3/1778 \text{ in}^3) (\text{DAY}/24 \text{ HR}) (\text{HR}/60 \text{ MIN}) = 0.000156 \text{ FT}^3/\text{MIN}$

Company Release Point ID:	Release Point Type: Horizon	tal
TRUCK LOADING	Release Point Latitude:	43.647684
	Release Point Longitude:	-105.582992
Company Release Point Description:	Base Elevation (ft): 5096	
vapors displaced from truck tank as oil is	Stack Height (ft): 12	
loaded into tank	Stack Diameter (ft): 0.83	
	Exit Gas Velocity (ft/s):	0.01
	Exit Gas Temp (F): 50	
	Exit Gas Flow Rate (acfm):	16.83
Company Release Point ID:	Release Point Latitude:	43.647684
FUGITIVES	Release Point Longitude:	-105.582992
	Release Height (ft): 4	
Company Release Point Description:		
Potential leaks		
Company Release Point ID:	Release Point Latitude:	
	Release Point Longitude:	
	Release Height (ft):	
Company Release Point Description:		
Company Release Point ID:	Release Point Latitude:	
	Release Point Longitude:	
	Release Height (ft):	
Company Release Point Description:		